
The r e su l t s  of the ca lcula t ions  for cav i t ies  of va r ious  configurat ions a r e  shown in Fig. 3. It is c l ea r  
f r o m  the f igures  that the effect ive absorp t ion  coeff icient  of the cavity is higher  for  para l le l  than for diffuse 
radia t ion,  except  for a cyl indr ica l  cavi ty  with H < 2.0. With inc reas ing  depth of the cavity,  or a dec r ea se  inthe 
angle of t ape r ,  eef f approaches  a ce r t a in  l imit ing value a sympto t i ca l l y  (eeff = 1 for para l le l  radiat ion,  and eeff= 
0.943 for diffuse radiat ion) .  The re fo re ,  i nc reas ing  H beyond 4.0 or dec reas ing  0 below 0.5 for diffuse radiat ion 
i nc rea se s  eel  f only sl ightly.  The value of S e r  f is m o r e  ef fect ively  inc reased  by inc reas ing  the e m i s s i v i t y  of the 
cavi ty  walls  and dec rea s ing  the rad ius  of the cavi ty  opening. For  para l le l  radia t ion dec reas ing  the angle of 
t aper  0 below 0.5 is a lso  effect ive in increas ing  ~eff. By choosing opt imum values  of all  four p a r a m e t e r s  it is 
poss ib le  to produce a c a l o r i m e t e r  for t he rm a l  radia t ion  with c h a r a c t e r i s t i c s  c lose ly  approaching  those of a 
b lack  body. 

NOTATION 

0, angle of t ape r  of cavity;  H, height of cavi ty;  R, rad ius ;  R0, radius  of opening of cavi ty;  e, emi s s iv i t y  
of cavi ty  wal ls ;  eeff, effect ive e m i s s i v i t y  of cavi ty;  Qin, incident heat;  Qref ,  r e f lec ted  heat;  k, re f lec t ion  co- 
eff ic ient  of cavi ty  wal ls .  

i. 

2. 

3. 

4. 
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SOME FEATURES OF THE THERMALLY CONCENTRATED 

CONVECTIVE MOTION OF A HARDENING BINARY 

MELT AND THE IMPURITY DISTRIBUTION 

P .  F .  Z a v g o r o d n i i  UDC 621.746.7.001 

Some fea tu res  of the t he rma l ly  concent ra ted  convect ive motion of a b inary  melt ,  hardening in 
a c losed r ec t angu la r  region with movable  boundar ies ,  and the impuri ty  dis t r ibut ion a re  inves-  
t igated numer ica l ly .  

It was shown in [i] that the impurity distribution in the hardening part of a crystallizing fixed meR is 
mainly determined by the nature of the change in the impurity concentration at the boundary between the hard 
and liquid phases. It was established in [2] that convective mixing of the liquid nucleus due to its temperature 
nonuniformity has a considerable effect on the nature.of the impurity distribution at the phase-transition bound- 
ary and, consequently, on the impurity distribution in the hardening part of the crystallizing melt. 

However, some features of the hardening of a binary melt were ignored in [i, 2]. Thus, when a binary 
melt hardens a concentrational nonuniformity develops in the liquid nucleus together with a temperature non- 
uni formi ty ,  due to the d i f ference  in the solubil i ty of the impur i ty  in the solid and liquid phases .  The re su l t  of 
the combined act ion of the t e m p e r a t u r e  and concentra t ion  nonuniformit ies  will be the occur rence  and develop- 
ment  of a t h e r m a l l y  concent ra ted  gravi ta t iona l  convect ive motion in the liquid nucleus of the hardening alloy,  
the fea tu res  of which should a lso  mani fes t  t h e m s e l v e s  in the nature  of the impur i ty  dis t r ibut ion.  

Consider  a r ec tangu la r  region filled with mel t  with initial  t e m p e r a t u r e  T O >T K and an initial impur i ty  con- 
tent  co, with re la t ive  d imens ions  l 1 = L J x o ,  l 2 = L2/x 0. The region in which the mel t  exis ts  is s i tuated in space 
such that 0 -< x l -  < Lt, 0 <- x2 -< L2, and the d i rec t ion  of the acce le ra t ion  due to gravi ty  de t e rmines  the posit ive di- 
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rec t ion  of the Ox 2 axis .  The hardening boundary  is a s sumed  to be plane, and d i rec t ly  s e p a r a t e s  the solid and 
liquid phases .  

At a ce r t a in  instant  of t ime  (t >0), when the t e m p e r a t u r e  of the boundar ies  of the region fails  abrupt ly  to 
the c rys t a l l i za t ion  t e m p e r a t u r e  of the mel t ,  a solid phase begins to be fo rmed ,  where  the var ia t ions  with t ime  
of the th ickness  of the so l id  phase and liquid nucleus a r e  a s sumed  to be known functions [3]. I f  we take as  the 
c h a r a c t e r i s t i c  d imens ions  the width Ll(x 0 = L1) of the region cons idered ,  then they have the following f o r m  in 
d imens ion le s s  notation: 

This  choice is quite just i f ied.  I t  follows f r o m  [4] that  the solution of this kind of p rob lem,  taking into account  
the effect  of convect ive mixing of the liquid nucleus due to heat  t r a n s f e r  through the solid phase,  which e s sen -  
t ia l ly  d e t e r m i n e s  the posi t ion with t ime  of the phase - t r ans i t i on  boundary,  does not introduce any cons iderable  
changes  into the final r e s u l t  obtained, but cons iderab ly  compl ica tes  the p r o g r a m  and i n c r e a s e s  the t i m e  taken 
to c a r r y  out the calculat ion.  

We will choose as  the object  being inves t igated a mel t  of low-carbon  s teel ,  the physical  p rope r t i e s  of 
which a r e  given in [5]. 

The ma thema t i ca l  model  of the p r o c e s s  cons i s t s  of the following equations taken in d imens ion less  form:  
the equat ion of m o m e n t u m  t r a n s f e r  in the Bouss ines f  approx imat ion  with the condition that  the c h a r a c t e r i s t i c  
ve loci ty  u 0 and the c h a r a c t e r i s t i c  p r e s s u r e  d i f fe rence  P m a x -  Pmin  a r e  given by the exp res s ions  

D D z 
u0-- , Pm~x--Pmin=:P X---~0 , 

X0 
0~7 

0 Fo + (Uv) U = - - V  n + Smh ~ / -  ~Srn2GrO- {_,SmZGrD ( S -  1); (1) 

The h e a t - t r a n s f e r  equation 

the m a s s - t r a n s f e r  equation 

O0-+(/~V) 0 = 1 AO; (2) 
0 Fo Lu 

OS .~.(OV )S - AS; (3) 
0 Fo 

and the equat ion of continuity 

V / ) :  0. 
In this case  the range  of var ia t ion  of the v a r i a b l e s  71 and 72 a r e  as  follows: 

In o rde r  to obtain a unique solution of Eqs.  (1)-(4) we will add the following initial conditions 

F o : O :  ~ ' ~ 0 ,  0 : 1 ,  S = I  

and the boundary  conditions 

OS 
~h = RI: v.,.= O, @ = 0 ,  - -  = R ~ ( 1 - - k ) S ,  

Oq~ 

OS 
Zh=e~: v2=O, 0 = 0 ,  - - - - : e ~ ( 1 - - k ) S ,  

a~l~ 
as 

~l"-=R2: v~ :O ,  @ = 0 ,  - - R ~ ( 1 - - k ) S ,  
aq~ 

aS lh=e2: v~=O, 0 : 0 ,  -- e~ (1 - -  k) S. 
0~12 

We will introduce the cu r r en t  function 
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a~ 

which iden t ica l ly  s a t i s f i e s  (4), the ve loc i ty  vo r t ex  ~ = cur l  U, and we will  a l so  change,  using the new v a r i a b l e s  

~ _  ~h--Ri ~2-- ~h--R~ 

f rom the reg ion  of r e c t a n g u l a r  c r o s s  sec t ion  to the reg ion  of a unit squa re ,  so that  0 -  ~2 -< 1 and 0 <- ~1- < 1 
throughout  the hardening  p r o c e s s  [2, 6]. 

To solve this  p r o b l e m  n u m e r i c a l l y  we used the f in i t e -d i f fe rence  method of a l t e rna t ing  d i r ec t ions  (the 
l o n g i t u d i n a l - t r a n s v e r s e  scheme)  [7], in which the equat ions a r e  sp l i t  with r e s p e c t  to the coord ina tes  ~1 and ~2, 
s imu l t aneous ly  using the method of f r ac t iona l  t ime  s teps  [8]. 

By us ing the i n t e g r o - i n t e r p o l a t i o n  method and de t e rmin ing  the running coeff ic ients  [7] the s y s t e m  of equa-  
t ions and boundary  condit ions were  reduced  to a s y s t e m  of a l g e b r a i c  equations which were  solved on the Dnepr-  
21 compute r  [9]. 

The gene ra l  c h a r a c t e r  of the t h e r m a l l y  concen t ra ted  g rav i t a t iona l  convect ive  flow of the liquid nucleus of 
a hardening  a l loy  and the na ture  of the impur i t y  d i s t r ibu t ion  was inves t iga ted  n u m e r i c a l l y  with Gr = GrD= 0.2 " 
107, l 2= 3, c~ = 10, 

In addi t ion,  we a l so  inves t iga ted  n u m e r i c a l l y  the effect  of the r a t io  of the Grashof  hydrodynamic  and dif- 
fusion n u m b e r s ,  for Gr = 0.2x 107, Gr D = 0.2x 108 and Gr = 0.2x 108 and Gr D = 0.2 x107, on the nature  of the t h e r -  
mal ly  concen t ra t ed  g rav i t a t i ona l  convect ive  motion for l 2 = 3 and ~ = 10, and a l so  the effect  of a change in the 
r e l a t i v e  height  of the c r y s t a l l i z e r  cavi ty  in the range  of values  l 2 = 1 ,  2 ,  and 3 for  Gr = GrD = 0.2 >: 107, o~ = 10. 
The equ i l i b r ium impur i ty  d i s t r ibu t ion  coeff ic ient  in a l l  c a s e s  was a s s um e d  to be k = 0.5 (the ini t ia!  concen t ra -  
t ion of ca rbon  in the i ron  Co -< 0.3%). 

F r o m  the condit ion for m a t h e m a t i c a l  s t ab i l i ty  and fa i r ly  high a c c u r a c y  by means of f r ac t iona l  ca lcu la t ions  
of the spa t i a l  gr id  we de t e rmined  the d imens ion  to be 32 x32. 

A n a l y s i s  of the r e s u l t s  of the ca lcu la t ion  enable  us to draw the following conclusion.  In a hardening  bin-  
a r y  mel t  the combined ac t ion  of the t e m p e r a t u r e  and concen t ra t ion  nonuni formi t ies  lead to the oc c u r r ence  and 
the deve lopment  in the liquid nucleus  of a hardening  mel t  of t h e r m a l l y  concen t ra ted  g rav i t a t iona l  convect ive 
motion.  The convect ive  motion can be divided into t h ree  pe r iods  (Fig.  1, curve  1). The f i r s t  is the per iod of 
a c c e l e r a t i o n  of the mel t  to the f i r s t  e x t r e m a l  value of the velocity-, co r r e spond ing  to the g r e a t e s t  of its maxi -  
mum va lues .  During this  per iod  the convect ive  motion of the mel t  is de t e rmined  by the t e m p e r a t u r e  nonuni- 
fo rmi ty  of the liquid nucleus ,  and hence,  the na ture  of the convect ive  motion at  this  s tage is  ident ica l  with the 
na ture  of the t h e r m a l - g r a v i t a t i o n a l  convect ive  motion,  which has the fo rm of two c losed  vo r t i c e s ,  s y m m e t r i c a l -  
ly p laced with r e s p e c t  to the v e r t i c a l  ax is  of the cavi ty  of  the c r y s t a l l i z e r .  In th is  case ,  along the v e r t i c a l b o u n d -  
a r i e s  of the phase t r an s i t i on  the mel t  d rops  to the bot tom par t ,  and in the c e n t r a l  reg ion  i t  moves in the d i r e c -  
t ion of the leading pa r t  of the c r y s t a l l i z e r  cavi ty  (Fig.  2a). 

The second per iod  is  a t r an s i t i on  per iod .  I ts  dura t ion  is de t e r m i ne d  by the t ime in te rva l  between the f i r s t  
and th i rd  e x t r e m a l  va lues  of the ve loc i ty .  During the second per iod  there  is a r e a d j u s t m e n t  of the ve loc i ty  field 
due to the reduct ion  in the effect  of the t e m p e r a t u r e  Ronuniformity and an i n c r e a s e  in the effect  of the concen- 
t r a t ion  nonuniformity  on the hydrodynamics  of the Liquid nucleus .  This  leads  to degenera t ion  of the vor tex  of 
the convect ive  motion due to the t e m p e r a t u r e  nonuniformity ,  and to the oc c u r r e nc e  and deve lopment  of a vor tex  
of convect ive  motion,  due to the concen t ra t ion  nonuniformity ,  and is in a d i r ec t ion  opposi te  to the in i t ia l  one 
(Fig.  2b). 

The th i rd  pe r iod  is the per iod  dur ing  which the concen t ra t ion  nonuniformity  has a dec i s ive  effect  on the 
hyd rodynamics  of the liquid nucleus .  The convect ive  motion during the th i rd  per iod ,  as  in the f i r s t  per iod,  has 
the fo rm of two c losed  v o r t i c e s  s i tua ted  s y m m e t r i c a l l y  with r e s p e c t  to the v e r t i c a l  of the c r y s t a l l i z e r  cavi ty ,  
but with a d i r ec t ion  of motion opposi te  to that  in the f i r s t  per iod  (Fig.  2c). 

For  Gr = 0.2 • 107, GrD = 0.2 • when the level  of the in tens i ty  of the deve lopment  of the convect ive mo- 
t ion is reduced ,  the dura t ion  of the f i r s t  and second pe r iods  is reduced  and the th i rd  per iod  is i nc r e a sed .  The 
value of the ve loc i ty  at  points of the f i r s t  and second e x t r e m a  of the ve loc i ty  is  reduced ,  while it  i n c r e a s e s  a t  
the point of the th i rd  e x t r e m u m  (Fig.  1, curve  2). This  is  obviously due to the i n c r e a s e  in the effect  of i t s  con- 
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eentrat ion nonuniformity on the 
diffusion number .  

Uz max ~ ~  

~6 " 

02 ' ~ ~----4--4-- - ~  
10 5 ~ -  - 

4 ~  , I , t , i I 
ID) : ! I 

1o-~o.2 o,~o6fo-~ o~_ o.~61~o2 ~o, szo "~ Fo 

Fig. 1. Time distr ibution of the maximum values 
of the velocity of the descending flows (l 2 = 3, a = 
10); 1) Gr = GrD= 0.2• 2) Gr = 0.2x 107 , GrD= 
0.2 • 108; 3) Gr=  0.2• 108 , GrD= 0.2x107. 

hydrodynamAcs of the liquid nucleus as a resu l t  of the increase  in the Grashof  

For  Gr = 0.2x 108 and Gr D = 0.2• 107 when the level of the intensity of the development of the convective 
motion is increased,  the period of acce le ra t ion  of the melt  to the f i rs t  ex t remal  value of the velocity is reduced. 
Never theless ,  due to the considerable  increase  in the duration of the second period, its third period is reduced.  
The value of the velocity at points of the f i rs t  and second ex t rema therefore  inc reases ,  while it is reduced at 
the point of the third ex t r emum (Fig. 1, curve 3). This can be explained by the relat ion between the t empera -  
ture  nonuniformity and the concentrat ion nonuniformity of the liquid nucleus, which is established when the ef- 
fect  of the t empera tu re  nonuniformity increases  due to the increase  in the Grashof  hydrodynamic number.  

In cavit ies  with smal l  re la t ive heights in the range of values l 2 = 1, 2, 3, the duration of the f i rs t  and sec-  
ond periods is reduced,  while the duration of the third perio d is increased.  

In addition, it should be noted that in the period of t ime compris ing  about 2% of the total hardening t ime 
f rom the beginning of the p rocess ,  some increase  in the level of the velocity in cavit ies with small  relat ive 
heights is observed over the level of the velocity of convective motion of the melt  in cavit ies with large relat ive 
heights. In the next picture the distr ibution of the velocit ies changes into the opposite, and in cavit ies with r e -  
duced relat ive heights a reduct ion in the overal l  level of the velocity of convective mixing of the liquid nucleus 
is observed.  

The explanation of this is obviously as follows. 

When the relat ive height of the c rys ta l l i ze r  cav i ty i s  reduced the rat io of the overal l  length of the phase- 
t rans i t ion  boundary to the a rea  of the liquid nucleus inc reases .  This facil i tates an intensification of the cooling 
of the liquid nucleus and thereby acce le ra t e s  the occur rence  and development of the t empera tu re  nonuniformity, 
which is also responsible  for the higher level of the velocity of convective motion of the melt. The increased 
level of the velocity of convective mixing of the liquid nucleus under more  intense cooling conditions obviously 
facil i tates the more  rapid degenerat ion of the t empera tu re  nonuniformity, which leads to a reduction in its ef- 
fect on the hydrodynamics  of the liquid nucleus.  

On the other hand, when the relat ive height of the c rys t a l l i ze r  cavity is reduced the value of the rat io of 
the overal l  length of the phase- t rans i t ion  boundary to the a rea  of the hardening melt  is reduced.  This leads to 
an increase  in the impuri ty  concentrat ion at the phase- t rans i t ion  boundary, which, under conditions of increasd 
velocity of convective mixing of the liquid nucleus,  facil i tates a more  rapid occurrence  and development of con- 
centrat ion nonuniformity.  

Since, for this case Pn >Pmp, the concentrat ion nonuniformity has an effect on the hydrodynamics  of the 
liquid nucleus facili tating a reduct ion in the level of the velocity of convective mixing. Never theless ,  an in- 
c r ea se  in the impuri ty  content in the liquid nucleus due to fairly intense t r ans fe r  of the impuri ty f rom the phase- 
t ransi t ion boundary into the depth of the liquid nucleus at this stage of the development of the concentrat ion non- 
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c~=10) ;  a) F o = 0 . 8 5 x 1 0 - 5 ;  b) F o = 0 . 1 7 5 x 1 0 - 3 ;  c) F o = 0 . 4 9  x l 0  -3.  
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Fig .  3. I m p u r i t y  d i s t r i b u t i o n  in a h a r d e n e d  a l l oy ,  l 2 = 3, a = 10: 1) 
Gr = GrD = 0 .2x  107; 2) Gr  = 0 .2x  107, Gr  D = 0.2• 108; 3) Gr  = 0.2x 
108 , Gr  D =  0.2 x107;  G r =  Gr  D =  0.2 x107 , ~ =  10: 4) 12= 1; 5 ) / 2 = 2 .  

u n i f o r m i t y ,  and s u b s e q u e n t  r e d u c t i o n  in the  o v e r a l l  l eve l  of the  r a t e  of  c o n v e c t i v e  m i x i n g  of  the  l iquid n u c l e u s ,  
p r o d u c e  a s i t u a t i o n  wh ich  h e l p s  to r e d u c e  the  i n t e n s i t y  of the  d e v e l o p m e n t  of the  c o n c e n t r a t i o n  nonuni fo rmi tyo  

H e n c e ,  the c o m b i n a t i o n  of  the  above  f a c t o r s  in  the  f ina l  a n a l y s i s  a l s o  c h a r a c t e r i z e s  the  a b o v e - m e n t i o n e d  
n a t u r e  of the  t h e r m a l l y  c o n c e n t r a t e d  g r a v i t a t i o n  c o n v e c t i v e  mo t ion  of the  m e l t .  

An a n a l y s i s  of  the  r e s u l t s  of a n u m e r i c a l  i n v e s t i g a t i o n  of the  n a t u r e  of the  i m p u r i t y  d i s t r i b u t i o n  in the  
m e l t ,  h a r d e n e d  u n d e r  t h e r m a l l y  c o n c e n t r a t e d  g r a v i t a t i o n a l  c o n v e c t i v e  m o t i o n  c o n d i t i o n s ,  e n a b l e s  us  to  d r a w  the 
fo l lowing  c o n c l u s i o n .  

The  i m p u r i t y  d i s t r i b u t i o n  has  a qu i t e  c l e a r  t e n d e n c y  to i n c r e a s e  i t s  con ten t  f r o m  the  p e r i p h e r y  of the  
h a r d e n i n g  m e l t  t o w a r d s  the  c e n t r a l  p a r t  (F ig .  3, c u r v e  1). T h i s  is in good a g r e e m e n t  wi th  the  r e s u l t s  ob ta ined  
in [2, 10], in which  i t  was  shown tha t  a s i m i l a r  p h e n o m e n o n  o c c u r s  for  an  i m p u r i t y  d i s t r i b u t i o n  in a m e l t  
h a r d e n e d  both  u n d e r  c o n d i t i o n s  of  a f ixed l iquid  n u c l e u s ,  and  u n d e r  cond i t i ons  of t h e r m a l  g r a v i t a t i o n a l  c o n v e c -  
t i ve  mix ing .  
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An impor tan t  fea ture  of the impur i ty  d is t r ibut ion  in a mel t  hardened under conditions of t he rma l ly  con- 
cen t ra ted  grav i ta t iona l  convect ive  mixing of the liquid nucleus is the fo rmat ion  between the pe r iphe ry  and its 
cen t ra l  pa r t  of  a so l id -phase  with e x t r e m a l  values  of the impur i ty  concent ra t ion  (Fig. 3, curve  1). 

The fo rmat ion  of a solid phase with e x t r e m a l  values  of the impur i ty  concentra t ion  is ident ical  in t ime 
with the per iod of ad jus tment  of the veloci ty  field of the convect ive motion, and is obviously due to the change 
in the impur i ty  concent ra t ion  at the p h a s e - t r a n s i t i o n  boundary due to the change in the intensi ty of convect ive 
t r a n s f e r  f r o m  the p h a s e - t r a n s i t i o n  boundary  into the depth of the liquid nucleus at  the given stage of the f o r m a -  
tion of the solid phase .  

For  a value of the Grasho f  hydrodynamic  and diffusion number s  Gr  = 0.7x 107 and GrD = 0.2x 108, the 
quant i ta t ive d i f ference  be tween the e x t r e m a l  values  of the impur i ty  concent ra t ion  inc rease ,  while the solid phase 
i t se l f  with e x t r e m a l  va lues  of the impur i ty  concent ra t ion  is shifted towards  the pe r iphe ra l  pa r t  of the harden-  
ing al loy (Fig. 3, curve  2). 

For  Gr = 0.2x 108 and GrD = 0.2 Xl0 ~ the quant i ta t ive d i f fe rences  between the e x t r e m a l  values  of the im-  
pur i ty  concent ra t ion  a r e  reduced  cons iderab ly ,  while the nature  of the impur i t y  d is t r ibut ion i t se l f  approaches  
the nature  of the impur i ty  d is t r ibut ion  in the mel t  hardened under t h e r m a l  gravi ta t ional  convect ive mixing con- 
dit ions of the liquid nucleus [2], (Fig. 3, cu rve  3). 

As in the f i r s t  case ,  in the second and thi rd  ca se s  the nature  of the impur i ty  dis t r ibut ion is due to the 
fea tu res  of the hydrodynamics  of the liquid nucleus of the hardening mel t .  

In c r y s t a l l i z e r s  with low values  of the re la t ive  heights in the range  l 2 = 1 ,  2 ,  and 3, together  with some  r e -  
duction in the value of the quant i ta t ive d i f ference  between the e x t r e m a l  values  of the impur i ty  concentra t ion 
the re  is a l so  a cons ide rab le  d i sp lacemen t  of the so l id -phase  zone with e x t r e m a l  values  of the impur i ty  concen-  
t r a t ion  towards  the pe r iphe ry  of the hardening mel t .  

Hence,  in a mel t  hardening under  t h e r m a l l y  concent ra ted  gravi ta t ional  convect ive mixing of the liquid 
nucleus a zone with e x t r e m a l  pa r t s  of impur i ty  content  is fo rmed  between the pe r iphery  and the cen t ra l  pa r t  of 
the fo rming  solid phase,  which leads to an i nc rea se  in the nonuniformity of i ts  dis t r ibut ion.  

An i nc r ea se  in the ra t io  of the Grasho f  hydrodynamic  and diffusion number s  leads to degeneracy  of the 
zone with e x t r e m a l  values  of the impur i ty  concent ra t ion  and hence fac i l i ta tes  an inc rease  in the uni formi ty  of 
i ts  dis t r ibut ion.  

In c r y s t a l l i z e r s  with lower values  of the re la t ive  heights in the range  l 2 = 1 ,  2 ,  and 3 the nonuniformity  of 
the impur i ty  d is t r ibut ion  i n c r e a s e s  due to broadening of the a r ea  occupied by the zone with e x t r e m a l  values of 
the impur i ty  concent ra t ion .  

N O T A T I O N  

x0, c h a r a c t e r i s t i c  d imens ion;  x i (i =1, 2), a d imens iona l  coordinate ;  Li (i = 1, 2), height and width of the 
c r y s t a l l i z e r  cavi ty;  r i ,  e i (i = 1, 2), d imens ional  coordina tes  of the phase t r ans i t ion  in the Oxlx 2 coordinate  s y s -  
t em;  T,  To, and TK, c u r r e n t  t e m p e r a t u r e ,  ini t ial  t e m p e r a t u r e ,  and mel t  c rys ta l l i za t ion  t e m p e r a t u r e ;  p, dens-  
ity of the mel t ;  P, Pmax,  and Pmin,  cu r r en t  p r e s s u r e ,  m a x i m u m  p r e s s u r e ,  and min imum p r e s s u r e  in the sys -  
tern; c, Co, cu r r en t  and init ial  impur i ty  concent ra t ion;  e2, unit vec tor  having the s ame  di rec t ion  as  the d i r ec -  
t ion as  the force  of g rav i ty ;  ~ ,  acce l e r a t i on  due to grav i ty ;  fi, coeff icient  of t h e r m a l  expansion;  % diffusion 
broadening coeff icient ;  9 ,  veloci ty  of convect ive motion;  v, k inemat ic  v i scos i ty ;  k, equi l ibr ium impur i ty  d is -  
t r ibut ion  coeff icient ;  t, c u r r e n t  t ime ;  D, diffusion coeff icient ;  a, t h e r m a l  diffusivi ty;  Z~T = T 0 - T K ,  initial  over -  
heating of the mel t ;  Hi = xi/x0 (i = 1, 2), d imens ion les s  coordinate ;  l i = L1/x 0 (i = 1, 2) is the re la t ive  height and 
width of the c r y s t a l l i z e r  cavi ty  in the coordinate  s y s t e m  0~71~2; Ri = r i /x0,  ei = e i / x  0, d imens ion less  coordi -  
nates  of the phase - t r an s i t i on  boundary in the 0~1V2 coordinate  sy s t em;  ~ = ~/u0, d imens ion less  veloci ty  of con- 
vec t ive  motion;  Gr = IglflAT~/~, 2, Grashof  hydrodynamic  number ;  GrD= Igl~/c0x~/v 2, Grashof  diffusion number ;  
Fo = Dt x 2, d imens ion less  t ime ,  Sm = v/D, Schmidt number ;  and Lu = D/a ,  Lewis number .  
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THERMAL DIFFUSIVITY OF INHOMOGENEOUS 

1. TEMPERATURE-FIELD CALCULATION 

G. N. Dul'nev and A. V. Sigalov 

S Y S T E M S  

UDC 536,24.02 

The poss ibi l i ty  of analyzing the nonsteady t e m p e r a t u r e  fields of inhomogeneous s y s t e m s  using 
the quas i -homogeneous -body  model  is invest igated.  

D e f i n i t i o n  o f  Q u a s i - H o m o g e n e o u s  B o d y  

A s y s t e m  consis t ing of homogeneous regions  (components) divided by boundary su r f aces  is usually r e -  
f e r r e d  to as  inhomogeneous or he te rogeneous .  Often, in o rde r  to calculate  the t e m p e r a t u r e  field, this body is 
r ep laced  by a quas i -homogeneous  body with effect ive t h e r m a l  conductivity and diffusivity (k, a) and volume spe-  
cific heat  (cp). It  is then postulated that t h e t e r n p e r a t u r e f i e l d  of this body is desc r ibed  at all  points by the equa- 
ti on 

Ot _ v~t,  (1) 
a O'v 

and in specifying the conditions at the ex te rna l  boundar ies  the effect ive t h e r m a l  conductivity is used. This  is 
de te rmined  e i ther  exper imen ta l ly ,  or by the methods of genera l ized  conduction theory  [1], and is equal to the 
ra t io  of the mean flow <q> through the body and the mean t e m p e r a t u r e  gradient  <Vt> in the body 

2 = - - ( q > / ( V t > .  (2) 

The effect ive  volume speci f ic  heat is de te rmined  f rom the addit ive formula  

k 

cO = ~ c~oim~, (3) 
i = 1  

and the effect ive t h e r m a l  diffusivity is found f r o m  a formula  valid for a homogeneous body 

a = ~Jcp. (4) 

This  approaches  to the ana lys i s  of i n h o m o g e n e o u s - s y s t e m  t e m p e r a t u r e  fields is widely known, but it is 
not poss ib le  to find a suff icient ly genera l  jus t i f icat ion of this method in the l i t e ra tu re .  In the p resen t  work, the 
e r r o r  involved in pass ing to a quas i -homogeneous  body for  the calculat ion of nonsteady t e m p e r a t u r e  fields is in- 
ves t igated,  and the l imits  of appl icabi l i ty  of the model in Eqs.  (I)-(4) a r e  es tabl i shed.  
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